【簡介:】??推力矢量技術(shù)目錄
概述
技術(shù)分類及對(duì)飛機(jī)總體性能的影響
應(yīng)用推力矢量技術(shù)后的一些戰(zhàn)術(shù)效果
所涉及的關(guān)鍵技術(shù)
[編輯本段]概述
推力矢量技術(shù)是指發(fā)動(dòng)機(jī)推力
??推力矢量技術(shù)目錄
概述
技術(shù)分類及對(duì)飛機(jī)總體性能的影響
應(yīng)用推力矢量技術(shù)后的一些戰(zhàn)術(shù)效果
所涉及的關(guān)鍵技術(shù)
[編輯本段]概述
推力矢量技術(shù)是指發(fā)動(dòng)機(jī)推力通過噴管或尾噴流的偏轉(zhuǎn)產(chǎn)生的推力分量來替代原飛機(jī)的操縱面或增強(qiáng)飛機(jī)的操縱功能,對(duì)飛機(jī)的飛行進(jìn)行實(shí)時(shí)控制的技術(shù)。
??對(duì)它的應(yīng)用,還得依靠計(jì)算機(jī)、電子技術(shù)、自動(dòng)控制技術(shù)、發(fā)動(dòng)機(jī)制造技術(shù)、材料和工藝等技術(shù)的一體化發(fā)展。
利用推力矢量技術(shù)到新設(shè)計(jì)和改型的下一世紀(jì)軍用飛機(jī)上,的確是一個(gè)有效的技術(shù)突破口,它對(duì)戰(zhàn)斗機(jī)的隱身、減阻,減重都十分有效。
推力矢量技術(shù)能讓發(fā)動(dòng)機(jī)推力的一部分變成操縱力,代替或部分代替操縱面,從而大大減少了雷達(dá)反射面積;不管迎角多大和飛行速度多低,飛機(jī)都可利用這部分操縱力進(jìn)行操縱,這就增加了飛機(jī)的可操縱性。
??由于直接產(chǎn)生操縱力,并且量值和方向易變,也就增加了飛機(jī)的敏捷性,因而可適當(dāng)?shù)販p小或去掉垂尾,也能替代其他一些操縱面。這對(duì)降低飛機(jī)的可探測性是有利的,也能使飛機(jī)的阻力減小,結(jié)構(gòu)重減輕。因此,使用推力矢量技術(shù)是解決設(shè)計(jì)矛盾的最佳選擇。許多年來,美、俄等國作了大量的飛行試驗(yàn),證明了利用推力矢量技術(shù)的確能達(dá)到預(yù)定的目的。
??
1991年4月海灣戰(zhàn)爭結(jié)束后,五角大樓拿出500億美元,研制不同于F-117的新型隱身飛機(jī),使用了推力矢量技術(shù),于是就有了基本滿足上述多種要求的F-22戰(zhàn)斗機(jī)。俄羅斯開展隱身和推力矢量技術(shù)的應(yīng)用研究包括,米格1。44利用發(fā)動(dòng)機(jī)向不同方向發(fā)出的氣流的反作用力可以迅速改變方向。
??《簡氏防務(wù)周刊》在1992年就說俄羅斯人已經(jīng)超越了F-117,直接研制出了現(xiàn)代的超聲速攻擊機(jī),成了F-22的競爭對(duì)手。
后來的研究還表明,當(dāng)飛機(jī)在飛行速度較低時(shí),采用推力轉(zhuǎn)向這種飛行控制裝置是絕對(duì)有利的,速度大時(shí),代價(jià)要大些,但是從保證飛行控制有足夠的安全裕度出發(fā)還是需要配備一些操縱面。
??代替垂尾起偏航操縱的一些操縱面研究,對(duì)于使用推力矢量技術(shù)的無尾飛機(jī)的研究來說,也是一項(xiàng)艱巨的任務(wù)。其中包括復(fù)雜的控制軟件的研究。
[編輯本段]技術(shù)分類及對(duì)飛機(jī)總體性能的影響
折流板
70年代中期,德國MBB公司的飛機(jī)設(shè)計(jì)師沃爾夫崗·赫爾伯斯提出利用控制發(fā)動(dòng)機(jī)尾噴流的方向來提高飛機(jī)的機(jī)動(dòng)能力。
??1985年美國國防預(yù)研局和MBB公司聯(lián)合進(jìn)行了可行性研究,1990年3月,美國Rockwell公司、Boeing公司和德國MBB公司共同研制的在發(fā)動(dòng)機(jī)尾噴口裝有可改變推力方向的3塊碳纖維復(fù)合材料舵面的試驗(yàn)驗(yàn)證飛機(jī)X-31出廠,并進(jìn)行了試飛,其舵面可相對(duì)發(fā)動(dòng)機(jī)軸線偏轉(zhuǎn)±10°,在迎角為70°時(shí)仍能操作自如,并具有過失速機(jī)動(dòng)能力[1,2]。
??
從1993年11月-1994年年底,在X-31與F-18之間進(jìn)行了一系列的模擬空戰(zhàn),在X-31飛機(jī)不使用推力矢量技術(shù)與F/A-18飛機(jī)同向并行開始空中格斗的情況下,16次交戰(zhàn)中F-18贏了12次;而在X-31使用推力矢量技術(shù)時(shí)66次交戰(zhàn)X-31贏了64次[3]。
??此外,美國在F-14和F-18上分別安裝折流板進(jìn)行了試驗(yàn)。
一般來說,折流板方案是在飛機(jī)的機(jī)尾罩外側(cè)加裝3或4塊可作向內(nèi)、向外徑向轉(zhuǎn)動(dòng)的尾板,靠尾板的轉(zhuǎn)向來改變飛機(jī)尾氣流的方向,實(shí)現(xiàn)推力矢量。這種方案的特點(diǎn)是發(fā)動(dòng)機(jī)無需做任何改裝,適于在現(xiàn)役飛機(jī)上進(jìn)行試驗(yàn)。
??其優(yōu)點(diǎn)是結(jié)構(gòu)簡單,成本較低,作為試驗(yàn)研究有一定價(jià)值。但有較大的死重和外廓尺寸,推力矢量工作時(shí)效率低,對(duì)飛機(jī)隱身和超音速巡航不利,所以它僅是發(fā)展推力矢量技術(shù)的一種試驗(yàn)驗(yàn)證方案。
二元矢量噴管
二元矢量噴管是飛機(jī)的尾噴管能在俯仰和偏航方向偏轉(zhuǎn),使飛機(jī)能在俯仰和偏航方向上產(chǎn)生垂直于飛機(jī)軸線附加力矩,因而使飛機(jī)具有推力矢量控制能力。
??二元矢量噴管通常是矩形的,或者是四塊可以配套轉(zhuǎn)動(dòng)的調(diào)節(jié)板。二元矢量噴管的種類有:二元收斂-擴(kuò)散噴管(2DCDN)、純膨脹斜坡噴管(SERN)、二元楔體式噴管(2DWN)、滑動(dòng)喉道式噴管(STVN)和球面收斂調(diào)節(jié)片噴管(SCFN)等。
通過研究證實(shí),二元矢量噴管易于實(shí)現(xiàn)推力矢量化。
??在80年代末,美國兩架預(yù)研戰(zhàn)斗機(jī)YF-22/F119和YF-23/F120均采用了這種矢量噴管。
二元矢量噴管的缺點(diǎn)是結(jié)構(gòu)比較笨重,內(nèi)流特性較差。
軸對(duì)稱矢量噴管
推力矢量技術(shù)的研究最初集中在二元矢量噴管,但隨著研究的深入發(fā)現(xiàn)二元噴管優(yōu)點(diǎn)雖多但缺點(diǎn)也很明顯,尤其是移植到現(xiàn)役飛機(jī)上相當(dāng)困難。
??因此又發(fā)展了軸對(duì)稱推力矢量噴管。GE公司在20世紀(jì)80年代中期開始軸對(duì)稱推力矢量噴管的研制,其研制的噴管由3個(gè)A9/轉(zhuǎn)向調(diào)節(jié)作動(dòng)筒、4個(gè)A8/喉道面積調(diào)節(jié)作動(dòng)筒、3個(gè)調(diào)節(jié)環(huán)支承機(jī)構(gòu)、噴管控制閥以及一組耐熱密封片等構(gòu)成。
流場推力矢量噴管
流場推力矢量噴管完全不同于前面幾種機(jī)械作動(dòng)式推力矢量噴管,其主要特點(diǎn)在于通過在噴管擴(kuò)散段引入側(cè)向次氣流(Secondary Fluid)去影響主氣流的狀態(tài),以達(dá)到改變和控制主氣流的面積和方向,進(jìn)而獲取推力矢量的目的。
??它的最主要優(yōu)點(diǎn)是省卻了大量的實(shí)施推力矢量用的機(jī)械運(yùn)動(dòng)件,簡化了結(jié)構(gòu),減輕了飛機(jī)重量,降低了維護(hù)成本。
實(shí)現(xiàn)流場推力矢量控制有多種途徑,目前研究的有以下方式:
1)噴流推力矢量控制。以氣流經(jīng)噴管擴(kuò)散段的一個(gè)或多個(gè)噴射孔射入,強(qiáng)迫主氣流附靠到噴射孔對(duì)側(cè)的壁面上流動(dòng),從而產(chǎn)生側(cè)向力;
2)反流推力矢量控制。
??在噴管出口截面的外部加一個(gè)外套,形成反向流動(dòng)的反流腔道,在需要主流偏轉(zhuǎn)時(shí),啟動(dòng)抽吸系統(tǒng)形成負(fù)壓,使主氣流偏轉(zhuǎn)產(chǎn)生側(cè)向力;
3)機(jī)械/流體組合式推力矢量控制。在距喉道一段距離處,裝有一個(gè)或多個(gè)長度相當(dāng)于喉道直徑15%-35%的可轉(zhuǎn)動(dòng)的小型氣動(dòng)調(diào)節(jié)片,由伺服機(jī)構(gòu)控制轉(zhuǎn)動(dòng),并可在非矢量狀態(tài)時(shí)縮進(jìn)管壁,通過調(diào)節(jié)片的擾流使氣流偏轉(zhuǎn),產(chǎn)生側(cè)向力
這幾種推力矢量裝置中,折流板方案只在X-31、F-14、F-18等飛機(jī)上做了試驗(yàn)驗(yàn)證,說明推力矢量控制飛機(jī)是有效用的,沒有被后來發(fā)展的推力矢量技術(shù)方案所采用。
??二元矢量噴管研究最早,技術(shù)也最為成熟,已經(jīng)為F-22等飛機(jī)所采用。軸對(duì)稱推力矢量噴管的研究稍晚于二元矢量噴管,但發(fā)展較快,己被SU-35、SU-37所采用。比較而言,軸對(duì)稱矢量噴管比二元矢量噴管功能更為優(yōu)越,技術(shù)難度更大,所以現(xiàn)在各國的研究發(fā)展重點(diǎn)已經(jīng)轉(zhuǎn)移到了軸對(duì)稱矢量噴管上。
??流場推力矢量噴管則因?yàn)檠芯枯^晚,仍在研究探索階段,離實(shí)用尚有一段距離,但將是最有前途推力矢量噴管。
[編輯本段]應(yīng)用推力矢量技術(shù)后的一些戰(zhàn)術(shù)效果
戰(zhàn)斗機(jī)應(yīng)用了推力矢量技術(shù)后,戰(zhàn)術(shù)效果有很大的提高,根據(jù)美國、俄羅斯的應(yīng)用經(jīng)驗(yàn)及飛行驗(yàn)證,的確如此。
??戰(zhàn)斗機(jī)戰(zhàn)術(shù)效果的提高可從幾方面來說明:
1) 起飛著陸機(jī)動(dòng)性、安全性加大。由于在起飛著陸過程中,都能使用推力轉(zhuǎn)向來增加升力,從而使滑跑距離大大縮短,若用推力反向,那么效果更為明顯,因此對(duì)機(jī)場要求降低,使飛機(jī)的使用更為機(jī)動(dòng)。對(duì)氣候的要求也可放松,不怕不對(duì)稱結(jié)冰、突風(fēng)、小風(fēng)暴對(duì)飛機(jī)的擾動(dòng),也減輕了起落架毀壞帶來的影響,戰(zhàn)斗力相對(duì)提高。
??
2) 加強(qiáng)了突防能力、靈活性、生存率和攻擊的突然性,這是因?yàn)闇p少了雷達(dá)反射面積和增加了機(jī)動(dòng)性。這種突然性很為寶貴,美國空軍航空系統(tǒng)分部司令約翰M。洛赫將軍說過,在過去被擊落的飛行員中有80%未見到是誰向他們開火的。生存率的提高增加了飛行員的信心,還可相應(yīng)減少戰(zhàn)斗機(jī)的配備,美國空軍計(jì)劃將空軍戰(zhàn)斗機(jī)縮減35%。
??
3) 航程有所加大,則增加了攻擊或防衛(wèi)的范圍。使用了推力矢量技術(shù)后由于舵面積的減少可使阻力減小,燃油消耗減小,相應(yīng)航程加大,另外,尾部重量的減少可導(dǎo)至飛機(jī)總重的較大減小,相應(yīng)可增加燃油,又可加大航程。
4) 近距格斗戰(zhàn)斗力提高,開辟了全新的空中格斗戰(zhàn)術(shù)。
??主要是可控迎角擴(kuò)大很多,大大超過了失速迎角,機(jī)頭指向能力加強(qiáng),提高了武器的使用機(jī)會(huì)。而且操縱力的增加使敏捷性增加。大的俯仰速率能夠使飛機(jī)快速控制大迎角,使機(jī)頭能精確停在能截獲目標(biāo)的位置,同時(shí)盡可能按照所希望停留時(shí)間,維持和實(shí)時(shí)調(diào)整這個(gè)迎角以便機(jī)頭指向目標(biāo)、鎖定和開火,隨后快速推桿,使飛機(jī)回復(fù)到較小的迎角(還原和復(fù)位)。
??常規(guī)飛機(jī)通常限制在遠(yuǎn)低于失速迎角的條件下飛行,如F-104飛機(jī)僅用了失速迎角的50%,現(xiàn)代戰(zhàn)斗機(jī)大約用了失速迎角的80%,而用推力轉(zhuǎn)向的X-31A飛機(jī)能達(dá)到失速迎角的2倍。此外繞俯仰軸的推力轉(zhuǎn)向還能大大增加升力系數(shù),則在支撐同樣飛機(jī)重量下可使飛機(jī)速度及角點(diǎn)速度降低,飛行角點(diǎn)速度低,有利于飛機(jī)改變方向,轉(zhuǎn)彎半徑可大大減小,轉(zhuǎn)彎速率卻能加大。
??在兩機(jī)迎面相遇狀態(tài),轉(zhuǎn)彎半徑小、轉(zhuǎn)彎速率大的飛機(jī)就能提前瞄準(zhǔn)對(duì)方開火,從而贏得格斗的勝利。X-31飛機(jī)轉(zhuǎn)彎半徑大約為143米,有效轉(zhuǎn)彎速率大約每秒80。6°,因此在與F-18、F-16等飛機(jī)格斗中,明顯占優(yōu)勢。蘇-37能快速安全下俯,水平加速,還能節(jié)省發(fā)動(dòng)機(jī)功率30%。
??它的鐘形和眼鏡蛇機(jī)動(dòng)可射中近距的F-22和F-117。
5) 提高了空對(duì)地的攻擊性能,命中率有所提高,投彈后規(guī)避動(dòng)作也更敏捷。
簡而言之,推力矢量技術(shù)就是通過偏轉(zhuǎn)發(fā)動(dòng)機(jī)噴流的方向,從而獲得額外操縱力矩的技術(shù)。
[編輯本段]所涉及的關(guān)鍵技術(shù)
應(yīng)用推力矢量技術(shù)所涉及的技術(shù)是很多的,主要有尾噴流轉(zhuǎn)向裝置,尾噴流轉(zhuǎn)向控制及其與發(fā)動(dòng)機(jī)、飛機(jī)飛行控制系統(tǒng)的配合,尾噴流轉(zhuǎn)向?qū)︼w機(jī)總體性能影響的預(yù)測及飛行演示等。
??
發(fā)動(dòng)機(jī)尾噴流轉(zhuǎn)向裝置要求結(jié)構(gòu)牢固、緊湊、耐用、密封性好、重量輕、轉(zhuǎn)向效益高、轉(zhuǎn)向快、阻力小。
尾噴流轉(zhuǎn)向控制范圍一般在20°內(nèi),但要求快速準(zhǔn)確,而且要與發(fā)動(dòng)機(jī)的控制系統(tǒng)和飛機(jī)飛行控制系統(tǒng)協(xié)調(diào),因此不僅控制硬件眾多,控制軟件也非常復(fù)雜。
??國外也認(rèn)為這是應(yīng)用推力矢量技術(shù)的關(guān)鍵技術(shù)??刂坡傻难芯颗c水平的提高還取決于所使用的氣動(dòng)力數(shù)據(jù)和發(fā)動(dòng)機(jī)動(dòng)力模型等的準(zhǔn)確度。
90年代以來,洛克希德?馬丁公司、萊特實(shí)驗(yàn)室、通用電器公司、空軍飛行試驗(yàn)中心聯(lián)合,已完成了VIS TA/F-16飛機(jī)多軸推力矢量(MATV)控制律的設(shè)計(jì)和評(píng)價(jià)。
??控制律在使飛行員能在飛機(jī)完全可控狀態(tài)下進(jìn)行機(jī)動(dòng)方面起了關(guān)鍵作用。MATV控制系統(tǒng)包括幾種運(yùn)行模式/狀態(tài)。設(shè)計(jì)MATV控制率的關(guān)鍵問題包括最優(yōu) 縱、橫向指令結(jié)構(gòu)的設(shè)計(jì)、精確可靠的迎角和側(cè)滑角計(jì)算器的研制和控制系統(tǒng)對(duì)空氣動(dòng)力不確定度的穩(wěn)定性的驗(yàn)證。
??另外,數(shù)字式增穩(wěn)控制型飛行試驗(yàn)控制律更新的設(shè)計(jì)和試驗(yàn)對(duì)于改進(jìn)MATV大迎角橫向飛行品質(zhì)是有幫助的。
國外已開展使用推力轉(zhuǎn)向和/或有眾多操縱面的無尾飛機(jī)或半無尾飛機(jī)的控制研究和風(fēng)洞試驗(yàn)。
關(guān)于使用推力轉(zhuǎn)向后對(duì)飛機(jī)總體性能影響的預(yù)測和飛行演示在前兩項(xiàng)關(guān)鍵技術(shù)完成的基礎(chǔ)上主要是涉及經(jīng)費(fèi)問題。
??預(yù)測工作主要在大風(fēng)洞進(jìn)行,試驗(yàn)變量為迎角、側(cè)滑角,風(fēng)速(M數(shù))及落壓比,同時(shí)需要流場顯示,以利試驗(yàn)結(jié)果分析,試驗(yàn)時(shí)特別要注意測量與非測量部分交接處的密封,但又不得傳力。
飛行演示是個(gè)綜合性技術(shù)驗(yàn)證,使用推力轉(zhuǎn)向的飛機(jī)由于控制系統(tǒng)復(fù)雜,更是不可少,但飛行演示前,也可先用模擬器進(jìn)行演示,或利用虛擬飛行試驗(yàn)系統(tǒng)進(jìn)行評(píng)估。
??
我們知道,作用在飛機(jī)上的推力是一個(gè)有大小、有方向的量,這種量被稱為矢量。然而,一般的飛機(jī)上,推力都順飛機(jī)軸線朝前,方向并不能改變,所以我們?yōu)榱藦?qiáng)調(diào)這一技術(shù)中推力方向可變的特點(diǎn),就將它稱為推力矢量技術(shù)。 不采用推力矢量技術(shù)的飛機(jī),發(fā)動(dòng)機(jī)的噴流都是與飛機(jī)的軸線重合的,產(chǎn)生的推力也沿軸線向前,這種情況下發(fā)動(dòng)機(jī)的推力只是用于克服飛機(jī)所受到的阻力,提供飛機(jī)加速的動(dòng)力。
?? 采用推力矢量技術(shù)的飛機(jī),則是通過噴管偏轉(zhuǎn),利用發(fā)動(dòng)機(jī)產(chǎn)生的推力,獲得多余的控制力矩,實(shí)現(xiàn)飛機(jī)的姿態(tài)控制。其突出特點(diǎn)是控制力矩與發(fā)動(dòng)機(jī)緊密相關(guān),而不受飛機(jī)本身姿態(tài)的影響。因此,可以保證在飛機(jī)作低速、大攻角機(jī)動(dòng)飛行而操縱舵面幾近失效時(shí)利用推力矢量提供的額外操縱力矩來控制飛機(jī)機(jī)動(dòng)。
??
第四代戰(zhàn)斗機(jī)要求飛機(jī)要具有過失速機(jī)動(dòng)能力,即大迎角下的機(jī)動(dòng)能力。推力矢量技術(shù)恰恰能提供這一能力,是實(shí)現(xiàn)第四代戰(zhàn)斗機(jī)戰(zhàn)術(shù)、技術(shù)要求的必然選擇。 我們可以通過圖解來了解推力矢量技術(shù)的原理。 普通飛機(jī)的飛行迎角是比較小的,在這種狀態(tài)下飛機(jī)的機(jī)翼和尾翼都能夠產(chǎn)生足夠的升力,保證飛機(jī)的正常飛行。
??當(dāng)飛機(jī)攻角逐漸增大,飛機(jī)的尾翼將陷入機(jī)翼的低能尾流中,造成尾翼失速,飛機(jī)進(jìn)入尾旋而導(dǎo)致墜毀。這個(gè)時(shí)候,縱然發(fā)動(dòng)機(jī)工作正常,也無法使飛機(jī)保持平衡停留在空中。 然而當(dāng)飛機(jī)采用了推力矢量之后,發(fā)動(dòng)機(jī)噴管上下偏轉(zhuǎn),產(chǎn)生的推力不再通過飛機(jī)的重心,產(chǎn)生了繞飛機(jī)重心的俯仰力距,這時(shí)推力就發(fā)揮了和飛機(jī)操縱面一樣的作用。
??由于推力的產(chǎn)生只與發(fā)動(dòng)機(jī)有關(guān)系,這樣就算飛機(jī)的迎角超過了失速迎角,推力仍然能夠提供力矩使飛機(jī)配平,只要機(jī)翼還能產(chǎn)生足夠大的升力,飛機(jī)就能繼續(xù)在空中飛行了。而且,通過實(shí)驗(yàn)還發(fā)現(xiàn)推力偏轉(zhuǎn)之后,不僅推力能產(chǎn)生直接的投影升力,還能通過超環(huán)量效應(yīng)令機(jī)翼產(chǎn)生誘導(dǎo)升力,使總的升力提高。
??
裝備了推力矢量技術(shù)的戰(zhàn)斗機(jī)由于具有了過失速機(jī)動(dòng)能力,擁有極大的空中優(yōu)勢,美國用裝備了推力矢量技術(shù)的X-31驗(yàn)證機(jī)與F-18做過模擬空戰(zhàn),結(jié)果X-31以1:32的戰(zhàn)績遙遙領(lǐng)先于F-18。 使用推力矢量技術(shù)的飛機(jī)不僅其機(jī)動(dòng)性大大提高,而且還具有前所未有的短距起落能力,這是因?yàn)槭褂猛屏κ噶考夹g(shù)的飛機(jī)的超環(huán)量升力和推力在升力方向的分量都有利于減小飛機(jī)的離地和接地速度,縮短飛機(jī)的滑跑距離。
??另外,由于推力矢量噴管很容易實(shí)現(xiàn)推力反向,飛機(jī)在降落之后的制動(dòng)力也大幅提高,因此著陸滑跑距離更加縮短了。
如果發(fā)動(dòng)機(jī)的噴管不僅可以上下偏轉(zhuǎn),還能夠左右偏轉(zhuǎn),那么推力不僅能夠提供飛機(jī)的俯仰力矩,還能夠提供偏航力矩,這就是全矢量飛機(jī)。 推力矢量技術(shù)的運(yùn)用提高了飛機(jī)的控制效率,使飛機(jī)的氣動(dòng)控制面,例如垂尾和立尾可以大大縮小,從而飛機(jī)的重量可以減輕。
??另外,垂尾和立尾形成的角反射器也因此縮小,飛機(jī)的隱身性能也得到了改善。
推力矢量技術(shù)是一項(xiàng)綜合性很強(qiáng)的技術(shù),它包括推力轉(zhuǎn)向噴管技術(shù)和飛機(jī)機(jī)體/推進(jìn)/控制系統(tǒng)一體化技術(shù)。推力矢量技術(shù)的開發(fā)和研究需要尖端的航空科技,反映了一個(gè)國家的綜合國力,目前世界上只有美國和俄羅斯掌握了這一技術(shù),F(xiàn)-22和Su-37就是兩國裝備了這一先進(jìn)技術(shù)的各自代表機(jī)種。
?? 我國現(xiàn)在也展開了對(duì)推力矢量技術(shù)的預(yù)先研究,并取得了一定的成果,相信在不遠(yuǎn)的將來,我們的飛機(jī)也能夠裝備上這一先進(jìn)技術(shù)翱翔藍(lán)天,增強(qiáng)我國的國防實(shí)力。
參考資料:
tp://
tp://
tp://
。